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Reaction-diffusion processes described by three-state 
quantum chains and integrability 
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Physikalisches lnsdtut der UniversitX BOM, NuDallee 12, 53115 Bonn, Germany 

Received 20 May 1994, in final form 18 October 1994 

Abstract. The master equation of one-dimensional threespecies reaction-diffusion processes is 
mapped onto an imaginaty-time Sck6dinger equation. In many oses the Hamiltonian obtained 
is that of an integrable quanNm chain with known properlies. Within this approach we search 
for thm-state integrable quantum chains with known spectra and which are related to diffusive- 
reacrive sysrems. Two inregable models are found to appear naturally in this context: the 
UqSU(2)-invariant model with external fields and the three-state UqSU(P/M).invariant Perk- 
Schultz models witb elitemal fields, A non-local similarity hansformation which brings the 
Hamiltonian goveming rhe chemical processes to the laownstandard forms is described, Leading 
in the case of periodic boundary conditions to a generalization of the Dzialoshinsky-Moriya 
interaction for N-state Hamiltonians (N > 2). 

3. Introduction 

Since the pioneering work of Smoluchowski in 1917 [I 1. reaction-diffusion-limited 
processes have had a forefront position in non-equilibrium statistical physics. They can 
be portrayed as bimolecular processes of the type 

k 
A + B + C + D  (1.1) 

where species A and B (C and D) react IO form C and D (A and B) with a reaction rate k 
(r). In the last decade much r e sych  has been 'reported mainly on irreversible (r = 0) and 
vacuum-driven chemical reactions, i.e. those for which at least one of the final products is 
an inert state, a precipitate or a non-reacting species (see [Z-91 and references therein). 

In spite of their apparent simplicity, tackling non-equilibrium problems described by 
(1.1) remains a most demanding task. Glauber 1101 circumvented some of these difficulties, 
largely of a mathematical nature, by devising an ingenious way of using classical spin 
systems to study the problem of critical dynamics by means of a master equation approach. 
A major breakthrough was made by Kandel et al [11] who showed that another class 
of non-equilibrium problems, namely the shrinking domains of king spins, could also be 
understood in terms of the integrable six-vertex model in one of its critical mansfolds [IZ]. 
This model has been one of the most fruitful paradigms of the mathematical theory of 
integrability [13] and it shed a new dimension into the possibilities of obtaining exact 
results in non-'equilibrium problems. More recently Alcaraz et nl [14] showed that the 
master equation for some particular reaction-diffusion processes could be mapped onto an 

t E-mail: dahmen@pibI.physik.uni-bonn.de 

03054470/95/040905+18$19,50 @ 1995 IOP Publishing Ltd 90s 



906 S R Dahmen 

imaginary-time Schrodinger equation for which the Hamiltonians were non-Hermitian and 
integrable q-deformed quantum chains. 

The aim of the present paper is to extend [I41 by finding three-state integrable 
quantum chains for which the Hamiltonians are time-evolution operators of diffusion- 
reaction processes and the spectra known or can easily be calculated. It is also our objective 
to obtain a better understanding of the role played by the boundaries in chemical reactions 
and how this can be understood in connection with quantum chains which arise from the 
mapping. 

Our motivation is twofold first, the equivalence of the spectra implicit in the 
equivalence of phase diagrams and the physical behaviour of chemical systems is then, 
in principle, determined by that of the chains they are mapped onto. For instance, if we 
consider the long-time behaviour of a system with its dynamics governed by (l.l), we 
expect the decay of the mean concentration for species j as a function of time to be of the 
form 

where a and z are characteristic of each problem. As an example, in the two-species 
annihilation process (A + B 0 + 0 where 0 is a vacancy), it has been found that in 
one dimension and for an initial random distribution of particles one has an algebraic fall- 
off with exponent a = $ [15]. The other regime can be attained by the inclusion of 
certain processes (or reversible reactions) which lead to a local steady state and therefore 
a quicker (exponential) approach to equilibrium. These regimes correspond, respectively, 
to the massless and massive phases  in^ the quantum chains mapping the chemical systems. 
Second, a major gain from the mapping is the existence of the Bethe ansatz for integrable 
models, which, in principle, allows one to calculate physical quantities exactly. 

We summarize our results in what follows. We found that a large class of chemical 
reactions taking place on a one-dimensional lattice with open boundaries can be understood 
in terms of two integrable three-state quantum chains. The first one is a UqSU(2)-invariant 
model for which the Hamiltonian, in the standard basis of matrices (E"),J = S X . . S ~ , ~ ,  reads 

- 
H ' = H ; + H ;  

.------ 
HA is U,,SU(Z)-invariant [17] and the symmetry-breaking H;, which commutes with HA, 
acts as an external field and does not spoil the integrability of the model. As shown in 
[18] HA has the spectrum (apart from degeneracies) and phase diagram of the spin-; X X Z  
model with an external field and a surface term, which reads 

L-I 
H X X Z  = -- [U:D& + u/crA1 t Au,%T~+~ + h($ +U:+]) +a(u: - ~ f + ~ )  + p ]  . 

2 ,  
(1.4) 
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This equivalence is crucial since the phase diagram for the X X Z  chain has been known for 
many years [19] and we can, through the mapping, interpret it in the language of reaction- 
diffusion processes. For h = 0 this model has a massless and conformal invariant phase 
when -1 f A < 1 and a massive antiferromagnetic (ferromagnetic) phase for A e -1 
(A t 1). When h # 0 the system is massive commensurate for A > 1 - h and massless 
incommensurate otherwise, the line A = 1 - h corresponding to a Pokrovski-Talapov (PT) 
phase transition between these two regimes [20]. 

The equivalence between Hh and HXXZ can be established by rewriting the latter in the 
basis of E" matrices 

where 

U = -2A UJ = A +  h b = -(&(A&+) +h). (1.6) 
Hh is obtained from H X X Z  by adding the matrix elements E~'E!jI and E!'EZ, which do 
not affect the spectrum (only degeneracies). The diagonal terms are extended accordingly. 
The wavefunctions of Hh have been calculated but the effect of H; on the phase diagram 
has not yet been studied [18]. 

As shown in [14], the second class of chains which naturally appear as time-evolution 
operators of chemical systems are the (P + M)-state U,SU(P/M)-invariant Perk-Schultz 
(PS) models [21,22]. The one-dimensional quantum Hamiltonian reads 

where, besides the anisotropy parameter q ,  one has an extra set of parameters {eu]  such 
that eo = = -ep = -ep+, = . .. = - E ~ + M - ~  = 1. Their role can 
be better understood in the original two-dimensional formulation of the PS models, namely 
the multicolour ice-models (number of colours = P + M). In these models ferroelechic 
configurations (all links of a vertex having the same colour) are favoured for colours a having 
E, = +I  and for colours b with eh = -1 the corresponding vertex weights favour alternating 
coloured configurations [23]. Each possible set {ee]  defines therefore a completely different 
physical system (see e.g. [24-26]). From a mathematical point of view though, these 
chains have a rich underlying Hecke algebraic structure which yields important relations as 
regards their spectrum [27]. Our result extends that of [I41 by showing that it is possible 
to encompass more general chemical reactions with the inclusion of external fields in the 
models given by ( P / M )  = (3/0) and ( P / M )  = (Z/l). 

The second result in this paper is intimately related to the problem of boundary 
conditions. In the case of quantum chains appearing in equilibrium problems, the boundaries 
are expected to play no significant role in the determination of the phase diagram. However, 
for chemical processes where the Hamiltonian is non-Hermitian, this picture is far from 
correct and the physics is boundary-dependent, This is intuitively clear if one thinks of a 
biased (k # r )  diffusion process 

. . . = 

k 
A + 0+0 + A .  
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For open boundaries (equivalent to an impenetrable wall) one gets an asymptotic limit with 
particles concentrated on one side of the lattice [28]. For periodic boundaries, the same is 
not true. This problem was understood in connection with two-state spin systems where the 
biased diffusion Hamiltonian was shown to be equivalent, under a standard local similarity 
transformation, to an X X Z  chain with a volume-dependent interaction at the boundary [29]. 
This boundary interaction term was also known [30] to arise in the X X Z  chain through the 
inclusion of a Dzialoshinsky-Moryia exchange term over the bulk [31]. We show that for 
higher-state systems diffusing on a lattice with periodic boundary conditions, the similarity 
transformation is non-local and yields volume-dependent bulk interactions which cannot be 
written as a pure boundary interaction on the corresponding quantum chain. 

The paper is organized as follows. In the second section we introduce the formalism 
of the master equation on lattices and its mapping onto nearest-neighbour.quantum chains. 
In section 3 we treat the U,,SU(Z)-invariant model as a workbench for the application of 
the method and reinterpret the phase diagram in the language of chemical processes. In 
section 4 we extend the known results for the Ps models with the inclusion of external fields. 
We define also the non-local similarity transformation in terms of which we can understand 
the role played by the boundaries. Section 5 is of a more mathematical character. We study 
the transformation and generalize it to a system with an arbitrary number N of species, also 
deriving the volume-dependent bulk interactions which arise from the mapping. Finally in 
section 6 we summarize our results and some questions which we still face. 

2. The master equation and quantum chains 

The master equation, which governs the evolution of the probability distribution of Markov 
processes, is applied here in the description of chemical processes on a chain. Consider 
a one-dimensional lattice with L sites and open boundaries. At each site j we define a 
variable ,Ej taking N integer values (0, 1,2, . . . , N - 1). To each possible configuration 
{p]  = [PI, , . , , BL} of the lattice realized at time t we attach a probability distribution 
P ( ( p ] ,  t )  whose time evolution is given by the master equation 

Here and henceforth the prime in a sum over 1 and m indicates exclusion of the pair 
l = m = 0. The r:;: are transition rates which equal the probability that, in a unit time step 
and at any site j .  j + 1 a state (@), = (a, 6 )  changes to a state ($, ,Ej+l) = (c, d) ,  
pictorically a + b + c + d .  We will assume throughout this paper that the transition 
rates depend only on links (nearest-neighbour interaction) and are homogeneous, i.e. site 
independent. The are related to the probability that a state (Q, 6 )  changes after a unit 
time step. Conservation of Probability implies 

Using the matrices Ek' we can rewrite the master equation (2.1) as 
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if we identify 111.) as the probability P((,9]: t )  and H as 
L-l L-l 

H = C H ~  = C(uj  - q) 

uj = Q ~ , ~ E ~ E ; ~ ~  

,=I j = l  

N-1 

o.b=O 
(2.4) 

To identify the Hamiltonians of these chemical processes with those of known integrable~ 
quantum chains we must find the appropriate set of rates so that H can be recast as 

L-I 

H = H0 + C(hi + hi+l + gi - & + I )  + H' 
j = l  

where Ho is the integrable Hamiltonian and the terms under the summation sign are a field 
and a surface contribution, respectively. The spectrum of H is independent of H'. We shall 
look only for those chemical processes with a spectrum equivalent to that of some quantum 
chain, therefore guaranteeing the equality of the phase diagram. The wavefunctions are not 
the same. For a non-degenernte spectrum it is, in principle, possible to define a similarity 
transformation of the,form A(A) such that 

L-I 

A(A)HA-'(A) = H O  + C(hi + hi+l + gi  - gi+l) + H"W (2.6) 
j = l  

such that for some given value A = A0 we have H"(A0) = 0. If such a transformation were 
found, then the wavefunctions of the chemical problem could be obtained from that of the 
quantum chain. 

3. The UqSU(2) model and the X X Z  chain 

In this section we address the problem of finding the set of chemical reactions associated 
with a given quantum chain based on the master equation approach. Our ultimate goal is to 
use the phase diagram of the chain to explain the chemistry of reaction-diffusion processes. 

In what follows we identify particles with A = 1, B = 2 and inert state (or vacancy) 
= 0. The boundaries are open. The symmetry requires that only left-right symmetric 
processes be taken into account. We therefore consider a system in which particles A and 
B diffuse symmetrically with rates equal to unity, i.e. r:;: = r::: = r;;$ = F:;$ = 1. In 
addition, we also allow particles to'react according to the following vacuum-driven rates: 

(i) Annihilation: pairwise destruction of particles with rates r;;;, r,:,, ro;o - o;o. 
(ii) Coagulation: pairwise aglutination of alike particles with rates r;;: = and 

(iii) Death: aparticle vanishes from the system according to = r$. 
(iv) Polymerization [32]: mending of alike particles with rates r:;: = r::; and 

(v) Trapping 1331: a particle traps its neighbour with rates r;:: = r::; = 1.0- - Y2.1 0.1 

2 2  I z - r 2 1  

$02 = r;;:. 
= F:;: and 

r2 .2  - r2.2. 
1.0- 0.1 

and ri:: = :;; - 1.2 - r2.I r -~r0,2 - 2.0' 
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Using (2.2)<2.4) we find that the chemical Hamiltonian corresponding to these~rates is 
given by 

H = H O  + H I  

_ I  = 

where 

/O 
r!?? + 1 -1 

-1 

roo:: 

I +2r;:; 

I 

r:; 
0 

y0.2 
0.0 

0 

(3.2) 

where the matrix elements not explicitly shown are zero. It is important to note that the 
spectrum of H coincides with that of Ho. This feature is encountered in many non-Hermitian 
chains and can be understood as follows: Ho conserves the total number IIA of A particles 
and ng of B particles separately and can therefore be brought into a block diagonal form. 
On the other hand, HI reduces the total particle number n A  + nB by one or two since it is 
made up of vacuum-driven processes. From linear algebra we know that the spectrum of 
matrices of the type H = Ho+ HI with such properties is independent of HI. This has an 
important physical consequence: since the spectrum does not depend on each parameter of 
HI sepatately but only on their combinations which enter in H o ,  the number of effective 
parameters is reduced to eight (see equation (3.2))t. 

T Due 10 conservation of probability each diagonal element of a Hamiltonian must equal lhe sum of the non- 
diagonal entries in that same column. We can see this if we look at the definitions of fates in section 2 and realize 
that the conservation of the probabilities implies in a relation among rates which can be written as xk+, Hkr = Hi,. 
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Our aim is to show that this Hamiltonian is equivalent to that of equation (1.3). To write 
it then in a more enlightening form, we first define some shorter notation by regrouping 
processes of the same category, as in table 1 (i = 1 .  2). 

Tabk 1. 

Notation Definition Processes 

It is clear that in the present problem only the symmetric combinations are non-zero, 
since the symmetry of the model so requires. If we make the following identifications 

U = A ]  +C:+ P: - 0: - 2  

w = $(D: + 0:) + 1 (3.3) 

together with three constraints 
2w + U = A2 + C: + P: 
4w + 2v = AT2 + T+ 

D1- 2 

(3.4) 
+-D+ 

we can rewrite H o  of (3.1) as 
L-I 

01 IO 10 ' 01 02 20 H o  = -(Ei E,+, + Ei + Ei Ei+, + E?'E&) + W ( E :  +E:+,) + UE?E:+, 
i=1 (3.5) 

E -  0 - Ell + E22 &I = E" - E22 

Comparing this expression with ,Hi of equation (1.3) we conclude that they have {.he same 
phase diagram since the term in HA having the parameter a as coefficient is a surface 
contribution. To interpret the phase diagram in the language of reaction-diffusion processes, 
it suffices to identify the parameters of the Heisenberg chain with the rates of the chemical 
model. It gives (see (1.6)) 

A I  + C: f P: 
2 

h =  

0: - ( A ~  + C: + P:) A = 1 +  
2 

= (3.6) 

The analysis is straightforward. h = 0 implies that all rates vanish but death. In this 
situation 

A = 1 +iD: p = - A .  (3.7) 
By varying the death rate we go from a massive regime to a massless one, that is, the 
time evolution for the concentration of particles has an exponential or algebraic fall-off, 
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respectively. This can be understood on physical grounds: being a 'one-particle' process, 
death happens irrespectively of any other processes occurring in the system, i.e. it is not 
diffusion-limited since any particle can die alone. It therefore outruns the characteristic 
time-scale set by diffusion and brings about a quicker decay. With an external field we 
have 

A + h - l = i D : .  (3.8) 

If death has a non-zero probability, then from the equation above one sees that the system 
is massive ferromagnetic. If we identify spin up in the Heisenberg model as a vacancy in 
chemistry, this means having a ground state with no particles. By varying the rate of death 
we approach the line on the phase diagram given by A + h = 1. The system undergoes 
a PT transition [20] when the energy~of the state with just one particle equals that of the 
state with no particles and it becomes the ground state. We have a level-crossing: since 
death is absent the system can evolve to a final steady state where only one particle is left. 
It is worth noting that in the massless regime (absence of death) many reactions besides 
diffusion still coexist, namely annihilation, coagulation, polymerization and trapping. This 
is so because the time-scale set by diffusion cannot be outrun, since all the remaining 
processes are two-particle ones. In other words, in a situation where the particles are some 
lattice spacings apart, they need first to diffuse before they reach each other and react-the 
processes are diffusion-limited. This observation is confirmed by results obtained in other 
studies where the time decay of the concentration of particles was shown to be algebraic in 
time (for pure annihilation cj - t'I4, see [IS]). It also allows us to say that, qualitatively, 
the massless regime remains even if the other three reactions are present, as the previous 
equations show. 

4. The PerkSchultz chains 

4.1. The UqSU(3/O), U q S U ( 2 / 1 )  and UqSU(l/2) chains 

It is well known that the Hamiltonian of the six-vertex model is also the time-evolution 
operator for the two-state asymmetric diffusion process [ 11 1. Recently this idea has been 
extended by Alcaraz and coworkers [I41 who showed that the PS Hamiltonians appear as the 
corresponding operators for higher-state diffusive systems. Intuitively we can understand 
this if we recall that the quantum PS chains were originally obtained from the t-continuum 
limit of the transfer matrix describing higher-state vertex models which obey the ice-rule. 
This picture is, however, far from complete and can be extended to encompass more general 
chemical systems if we reinterpret the additional reactions on chemical Hamiltonians as 
external fields in the Ps chains onto which they are mapped. For the sake of completeness, 
we present first the results without external fields obtained in [I41 and then proceed with 
the generalization of these results. 

We first consider a system in which particles A and B diffuse on the lattice with rate 
rR if the particle jumps to the right or rL otherwise. For the interchange process we take 
the rates accordingly if B replaces A~on  the right or on the left. With the rates so defined 



Three-srare quantum chains and integrability 913 

we get a Hamiltonian which reads 

L-I 
H = ~ H ~  

i=l  

Hi = 

/ O  

Defining 
constant 

= q ,  which measurm the asymmetly of the diffusion, and the diffusion 
= V, which sets the timescale of the problem, this can be reu?icten as 

3 
4 -q-l  

-4 4-' 

4 -q-L  

0 
4 - 4 - 1  

-4 4-' 

(4.2) 

In [14] it was observed that this non-Hermitian (q  is real!) Hamiltonian is UqSU(3/0)- 
invariant (cf equation (1.7)). They further observed that if one considered only a new 
set of processes corresponding to coagulation of B (B + B -+ B + 0 with rate r::: and 
B + B + 0 + B with @') such that f;: + r$ = V(q + q-I) and the above plus 
coagulation of A (A + A + A + B with ri;: and A + A + 0 + A  with FA;;) with the 
restriction rq + rii = V(q + 4-I) non-Hermitian U,SU(Z/I)-invariant and U,SU(l/Z)- 
invariant chains are obtained. The exact form of the transformation matrix which brings 
these chains to a Hermitian form was however still lacking. This motivated us to find this 
similarity transformation which, in contradistinction to the two-state case (see e.g. [29]), is 
non-local and reads 

F =  2 4; ~ ~ , c = j  s i g n ( @ j - W ) E U l o l  @ E Q U 2  @ , , , @ (4.3) 
U, ,U2 ..... &=O 

The physical features this matrix induces are also completely novel. We postpone a more 
detailed discussion of this topic to the next section, where we study its properties. 

We note that the two last chains present a particular feature. From the spectrum of the 
(2/1) chain, the spectrum of the (1/2) can be obtained in a straighforward manner. We 
reverse the sign of the whole spectrum of the @/I)  model and add an overall constant equal 
to (L - l ) (q  + q-'), which is the highest energy of the (2 /1 )  chain (this value is indeed the 
highest energy for all L-site ( P / M )  chains with q real and non-zero P and M: an outline 
proof is given in [27]). In the chemical scenario, however, they correspond to different 
physical pictures and the reason is the positivity of the spectrum. 
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4.2. The chains with external felds 

We now generalize the previously mentioned results to include the most general set of 
vacuum-driven processes which can be written as a pure non-Hermitian Hamiltonian HI 
which does not affect the spectrum of the PS chains. Beyond the 24 rates of section 3 (no 
left-right symmetry!) we can include one more set of reactions, namely those corresponding 
to mutation and transmutation of A. The corresponding rates are r;::, r:;:, r::; and r?:. 
For these reactions we define the following combination 

(4.4) 
Using the master-equation approach we get a Hamiltonian which can he written as follows 

M: = I$> i rit: X* 1 - - roJ 2.0 j, rg. , 

. (4.6) 

It is important to note, as in the last section, that the spectrum of H' depends on H' only 
through the h's and g's which are diagonal contributions arising due to conservation of 
probabilities. They commute with H,.playing the role of external fields and surface terms, 
respectively. Their values differ for each particular chain as can be seen in table 2. 

Table 2 

Model hi hz 81 82 constraints 

Df= C: + P: + A2 - D(q +q- ' )  
A:, t T+ =M: +Xt + 0: + O b  

The constraints arise from the fact the number of parameters in the original chemical 
problem exceeds those of the quantum chains they are mapped onto and must therefore be 
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related. Due to the symmetry properties of the Ps chains, the field .(and surface contribution) 
were decomposed into three independent variables h, (g.), one for each conserved particle 
of type a. Since one of our particles is an inert state, we took the corresponding variables 
ho (go) to be equal to zero. 

Unfortunately little is known about the phase diagram of the Ps chains on an external 
field. Since the field commutes with the particle number operators, its effect on the spectrum 
is trivial and one may use the Bethe ansatz equations to obtain reliable finite-size data and 
consequently determine the phase diagram. Apart from the difficulties in analysing these 
equations, there is an additional subtlety: the non-Hermitian chemical Hamiltonians are 
related under F to PS chains with different properties, whether the boundaries in the original 
formulation are open or periodic. This reflects the fact that the chemistry of reaction- 
diffusion models is boundq-dependent (see the discussion in the introduction of this paper) 
and in our case this is brought about by the non-locality of 3. For periodic boundaries, we 
found that the bias-dependent chemical system is similar through F to a PS Hamiltonian 
with volume-dependent interactions spread through the bulk in a highly non-trivial way (see 
section 6). In this case the Bethe ansatz equations are given by [34] 

(4.7) 

where { e m ]  are the parameters of the PS chains, and y is related to q through q = exp(y). 
The Nj’s  correspond to the particular number of particles of type i in each charge sector 
and the Mi’s  equal the number of roots of the set of coupled equations. They are obtained 
from the Ni’s through 

Mj = L - (No + N I  + .  .. + Nj)  (4.8) 

where L is the lattice size. These equations were also derived by Lopes and de Vega [23] 
but without the bias-dependent non-local interactions. We shall return to this problem in a 
future publication. 

5. Similarity transformation and boundary conditions 

In this section we consider thoroughly the transformation given by the matrix 3 introduced 
in the last section. We shall address two points: the first regards the extention of F 
not only to higher-state models but also to multi-parameter diffusion processes, i.e. those 
characterized by a larger set { q ]  = (SI, qz, . . .) of parameters in contradistinction to the 
one-parameter diffusion we dealt with so far. Second, we want to look at the effect of F on 
periodic chains and the physical features it induces. We would like to note that this matrix 
is implicitly used by Reshetikhin in his paper on multi-parameter quantum groups [35]. 
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5. I .  Multi-parameter and higher-state diffusion processes 

As before, we consider a system in which ( N  - 1) different species diffuse and interchange 
places on a one-dimensional lattice with open boundary conditions with rates 

A,  + Ay + Ay + A ,  FAr'A'; A,.A, FA""' &.A, (5.1) 

from which we define i N ( N  - 1) parameters qxy 

x > y = 0, 1, , . . , N - 1 

(5.4) 

which govems the time evolution of the chemical system defined above. Our goal is to 
find a similarity transformation which makes H Hermitian. The (non-local!) similarity 
transformation which accomplishes this reads 

(5.5) 

with the functions f ,  given by 
L 

f x y ( U 1 ,  ciz,. , ., (YL) = ; ( & Y " , x L , , y  - Bcf,,,y~n,,*). (5.6) 
(2>!7l=1 

We point out in the expression for the function that the order of its arguments is 
very important since they index the sites on the chain, that is, f( ... ,ci j ,ci j+1, ...) # 
I(. . . ,ci j+l,  a j , .  . .). 

Proof. For clarity, we consider the diagonal and non-diagonal parts of the Hamiltonian 
separately. Since 3(xj H j , j + 1 ) 3 - '  = x j 3 H j , j + , F - ' ,  it suffices to consider the action 
of S on the two-site operator Hj,j+l .  

Consider first the action of 3 on the diagonal piece of the Hamiltonian. We have 
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N-I 

( q , h ~ q * , ~ u a ~ P J P ,  a EU,+I~,+, ~ h h ~ B j + i B , + i ) ,  (5.8) 
aj.a;+~ +h=o 
Bj.Bj+t 

Since x ,  y .  w and z serve only to index the same set { q }  of diffusion parameters, we can 
take x = w, y = z. Using the multiplication properties of the matrices E@, namely 

EP9Er.r = &,,,EP,v (5.9) 

we get 

Taking into account the Kronecker's deltas we have 

xEal"i @ EQUZ a.. . @ l ( j )  @ 1ti+U .. . @ EWL, 

The exponent of qry is clearly zero. Summing over (a) we have finally 

(5.10) 

(5.11) 

(5.12) 

This shows that the diagonal elements of the Hamiltonian are not changed..by the 
transformation generated by F.~ 

To see the effect of 3 on the non-diagonal part we consider only the two-body operator 
for a given value of the pair (a ,  b) .  We have 

As in the diagonal case, after multiplying the E@ matrices on each site we obtain 

(5.13) 
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This reduces to 

(5.15) 

(5.16) 

Summing over {a) gives us an identity matrix on each site. Kronecker's delta eliminates 
the sum over aj, ai+l such that we are left with 

-1 baEnb 
= (q;bqubEYhE;$i f %bq,h Ej 
= (EYhE$l f Ej ha Ej+l)n>b. nb 

i + ~  o b  

(5.18) 
0 

To finish we would like to indicate how in the one-parameter N-state diffusion process 

A , + A , + A , + A ,  rR,rL X S Y = O , I  ,_.., N - i  (5.19) 

The above term is clearly Hermitian. This concludes our proof. 

this expression simplifies. The rates are defined according to 

for which the L-site Hamiltonian reads 

In this situation the operator F from equation (5.5) with qxy = q reduces to a much simpler 
form. By observing that in this case we have 

fi (a], az. . . . , OIL) + .-. . + fN-1 (a1, az. . . . , cfL) = 3 
3 is reduced to (see section 4) 

L 
~sign(a# - am) (5.21) 

n>m=1 

3- y qf ~~,,,=Isign(=.-u.)Eulul 8 , p a ?  @ .. . @ EULUL, (5,221 

The results presented here hold for any of the U,SU(P/M)-invariant Ps chains with 
P f M = N .  

a, , U ~ , . . . , U F O  
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5.2. Periodic boundary conditions 

Due to the non-locality of the similarity transformation, the chemical chains with free or 
periodic boundaries transform differently under 3. In the first case the non-Hermitian 
chemical Hamiltonian is transformed into a Hermitian Ps chain.  in^ the second case, the 
Hamiltonian is similar under F to a quantum chain with non-trivial bulk interactions. In 
the two-state model, this simplifies to a volume-dependent boundary interaction which, on 
its turn, was understood to arise kom a Dzialoshinsky-Moriya interaction in the bulk [31]. 
This has been known for years and we review it shortly. 

Consider as before particles diffusing on a one-dimensional lattice with periodic 
boundaries. The rates are given by . .  

A + 0 + 0 + A  rR,rL (5.23) 

where 'D and q are defined in the usual way (see section 4). The Hamiltonian thus generated 
reads 

(5.24) -I 10 01 E O I E I O  
-4 Ek - 4  k k + l ) -  

It is convenient to change to the more familiar basis of Pauli matrices, by making the 
identification 

E 00 = $(l+u2) 
E 11 = i ( 1 - d )  

Eo' U+ 

E" = U- 

In this basis the Hamiltonian can be written as 

(5.25) 

(5.26) 

The constant term is irrelevant in our discussion and we will drop it for the time being. 
Applying equation (5.22) to the remaining terms in the chain we get 

-1 (2qLu$7; + 2q- L U, - U] + + - 4 + q - 1 u * u i  L I ) .  
2 2 

(5.27) 

Since q is real, we have a boundary term which is proportional to the volume of the system, 
changing the whole structure of the problem. In other words, the dynamics of diffusion 
processes in a chain with open boundaries are different from that of a periodic chain [29]. 

To explicitly see the Dzialoshinsky-Moryia interaction in (5.26), redefine q in terms of 
a new variable 7 

(5.28) 
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in terms of which rR = ;(I + 7) and r L  = i (1  - 7). After some simple algebraic 
manipulation one can write (5.26) apart from the constant as 

(5.29) 

The new term is clearly recognizable as a Dzialoshinsky-Moryia interaction term. 
For higher-state diffusion models on periodic lattices we get interactions other than the 

ones obtained in the two-state case, after applying F. To see this we first note that the whole 
effect of F is to change the off-diagonal terms of the two-body chemical Hamiltonian at the 
boundary, namely E t * E p  and E p  E;*. In the two-state case there are only two possibilities 
for the pair (a ,  b): (LO) and (0,l). Since opposite pairs are related by an inversion of the 
power of q ,  we have effectively one result which is 4'. In higher-state cases, the power 
depends on the particular (a. b)  chosen. We present the results for the three-state model 
and the for the general N-state case in what follows. 

5.2.1. Three-state diffusion process Here we have (a ,  b) = (0, 1);  (0,2); (1,2) and the 
reversed pairs. The action of F yields 

F{q- 'EP'E~']7- '  =~q-'EP'@Mj @ M i  @ . . . @ M I  @ ELo 

4 ,) (5.30) 

for (a ,  b)  = (0, 1). Exchanging a ,  b we get the same structure but with q replaced by q - l ,  
as expected. For the pair (a ,  b) = (1,2) we obtain 

M 2 = ( '  q q ) .  
(5.31) 

Finally for (a. b) = (0,Z) we have 

(5.32) 

We see now that, in the case under study, the effect of the transformation cannot be 
understood in terms of boundary interactions, in contradistinction to the two-state problem- 
the interaction is 'spread' over the bulk. The structure is analogous in higher-state models 
as is shown next. 

3 { q - E ,  I 02 E L I F -  20 I - - q  -2 El 02 ~ M I M ~ @ M I M z @ . . . @ M I M z @ E ~ .  

5.2.2. N-state diffusion process Assume that (a ,  6 )  = (i, j )  such that i < j = 
0, 1, . . . , N - 1. We obtain in this case 

F(q- i  E y E f l F - ~  = q-2Ei j  , @ M @ M @ . . . @ M @ E f  (5.33) 
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where M is an N x N matrix which reads 

921 

(5.34) 

where q appears at the ith and jth positions in the diagonal. All other are equal to 1 
for k < i and k > j and equal to q2 in the case i < k < j. The interaction is spread along 
the bulk as we can see from equation (5.33). 

6. Conclusions 

In this paper we have shown that: (i) the Hamiltonian obtained from the master equation 
of general three-state diffusion-reaction systems is related to two known inteagable chains, 
namely the UqSU(2)-invariant model and the Ps Hamiltonian with extemal fields. In these 
mappings, not all rates.governing the chemical processes are important in determining the 
phase diagram of the the system; and (ii) the presence of asymmetic diffusion for three- and 
higher-state systems reflects itself in the structure of the related quantum chains through the 
appearance of a non-local bias-dependent interaction term, in contradistinction to the two- 
state case, where such asymmetry leads to a volume-dependent interaction for the boundary 
spins of the associated quantum chain. This novel interaction can be understood as an 
extension of a Dzialoshinsky-Moryia interaction for higher-state chains. 

The mapping used in this paper preserves the spectrum of the chains, implying that the 
phase diagram of the chemical model is completely settled by that of the integrable chain. As 
an example, we showed in section 3 how the massless and massive regimes of the quantum 
chains yields two types of time dependence for the decay of the particles’ concentration, 
which are in agreement with other studies [15]. In the PS models with external fields, where 
little about the phase diagam is known, we, went beyond the mapping by deriving the 
Bethe ansatz equations for the three-state chemical processes taking place on a lattice with 
periodic boundaries which is related through a similarity transformation to a Ps chain with 
the novel bulk interactions. Much is still to be done in the exploration of this mapping and 
we expect it will enable us in the near future to gain some new insights and shed some light 
onto the physics of reaction-diffusion models. 
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