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Reaction—diffusion processes described by three-state
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Abstract. The master equation of one-dimensionat three-species reaction—diffusion processes is
mapped onto an imaginary-time Schridinger equation. In many cases the Hamiftorian obtained
is that of an integrable quantum chain with known properties. Within this approach we search
for three-state integrable quantum chains with known spectra and which are related to diffusive-
reactive systems. Two integrable models are found to appear naturally in this context: the
qu-invaﬁant model with external fields and the three-state U, SU(P/M)-invariant Perk—
Schultz models with external fields. A non-local similarity transformation which brings the
Hamiltonian governing the chemijcal processes to the known standard forms is described, {eading
in the case of periodic boundary conditions to a generalization of the Dzialoshinsky-Moriya
interaction for N-state Hamiltonians (N > 2).

1. Introduction

Since the pioneering work of Smoluchowski in 1917 (1], reaction—diffusion-limited
processes have had a forefront position in non-equilibrium statistical physics. They can
be portrayed as bimolecular processes of the type

A+B=C+D o an

where species A and B (C and D) react to form C and D (A and B) with a reaction rate %
(r). In the last decade much research has been reported mainly on irreversible (r = 0) and
vacuum-driven chemical reactions, i.e. those for which at least one of the final products is
an inert state, a precipitate or a non-reacting species (see [2-9] and references therein).

In spite of their apparent simplicity, tackling non-equilibrium problems described by
(1.1) remains a most demanding task. Glauber [10] cirecumvented some of these difficulties,
largely of a mathematical nature, by devising an ingenious way of using classical spin
systems to study the problem of critical dynamics by means of a master equation approach.
A major breakthrough was made by Kandel er al [11] who showed that another class
of non-equilibrium problems, namely the shrinking domains of Ising spins, could also be
understood in terms of the integrable six-vertex model in one of its critical manifolds [12].
This model has been one of the most fruitful paradigms of the mathematical theory of
integrability [13] and it shed a new dimension into the possibilities of obtaining exact
results in non-equilibrinm problems. More recently Alcaraz ef al [14] showed that the
master equation for some particular reaction—diffusion processes could be mapped onto an
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906 S R Dahmen

imaginary-time Schridinger equation for which the Hamiltonians were non-Hermitian and
integrable g-deformed quantum chains.

The aim of the preseni paper is to exiend [14] by finding three-siate integrable
qguantum chains for which the Hamiltonians are time-evolution operators of diffusion-
reaction processes and the spectra known or can easily be calculated. It is also our objective
to obtain a betier understanding of the role played by the boundaries in chemical reactions
and how this can be understood in connection with quantum chains which arise from the
mapping.

Our motivation is twofold: first, the equivalence of the spectra implicit in the
equivalence of phase diagrams and the physical behaviour of chemical systems is then,
in principle, determined by that of the chains they are mapped onto. For instance, if we
consider the long-time behaviour of a system with its dynamics governed by (1.1), we
expect the decay of the mean concentration for species j as a function of time to be of the
form

T )

cj ™~ {e_'h_ (1.2)
where o and 7t are characteristic of each problem. As an example, in the two-species
annihilation process (A +B — @+ @ where  is a vacancy), it has been found that in
one dimension and for an initial random distribution of particles one has an algebraic fall-
off with exponent o = ‘-11 [15]. The other regime can be attained by the inclusion of
certain processes (or reversible reactions) which lead to a local steady state and therefore
a quicker (exponential) approach to equilibrium. These regimes correspond, respectively,
to the massless and massive phases in' the quantum chains mapping the chemical systems.
Second, a major gain from the mapping is the existence of the Bethe ansatz for integrable

models, which, in principle, allows one to calculate physical quantities exactly.
We summarize our results in what follows, We found that a large class of chemical
reactions taking place on a one-dimensional lattice with open boundaries can be understood

in terms of two integrable three-state quantum chains. The first one is a U/, SU (2)-invariant
model for which the Hamiltonian, in the standard basis of matrices (E¥), , = 8¢ 6,5, reads

H' =Hy+ H;
L-I
Hy = = Y (EV B, + BB, + EFER, + EPEE) +velel
i=}
+w(E + &8 ) +aE ~ ) (1.3)

L
Hi=~g) ¢

i=1

8'0 = Eﬂ + EZZ &t = E]l - EZ’L’_

Hj is qu—invariant [17] and the symmetry-breaking H,, which commutes with Hj,
acts as an external field and does not spoil the integrability of the model. As shown in
(18] H} has the spectrum (apart from degeneracies) and phase diagram of the spin-% XXZ
model with an external field and a surface term, which reads

L1

Z {o‘[.""o'f_i_] + criy"'fl-};-l + Adfo}, +h(of + 08 ) +alof —of) + 5} .

i

HXXZ = _

| =

(14)
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This equivalence is crucial since the phase diagram for the X XZ chain has been known for
many years [19] and we can, through the mapping, interpret it in the language of reaction—
diffusion processes. For & = 0 this model has a massless and conformal invariant phase
when —1 € A < 1 and a massive antiferromagnetic (ferromagnetic) phase for A < ~1
{A > 1). When A # 0 the system is massive commensorate for A > 1 — k and massless
incommensurate otherwise, the line A = 1 — & corresponding to a Pokrovski~Talapov (PT)
phase transition between these two regimes [20],

The equivalence between Hj and HXXZ can be established by rewntmg the latter in the
basis of E¥ mamces

HX¥E = Z(E“‘E,+1 +ECEN) + 0B EL + w(E! + El) +a(E' - Ell)+b

(1.5)
where
u=—2A w=A+h b=—(GA+B) +h). (1.6)

H} is obtained from HX*? by adding the matrix elements E{*E?}, and EPE?, which do
not affect the spectrum (only degeneracies). The diagonal terms are extended accordingly.
The wavefunctions of Hy have been calculated but the effect of H| on the phase diagram
has not yet been studied [18].

As shown in [14], the second class of chains which naturally appear as time-evolution
operators of chemical systems are the (P + M)-state U,SU (P /M )-invariant Perk—Schultz
(Ps) models [21 22]. The one-dimensional quantum Hamiltonian reads

- P+M-1 -1 P4+M-1
g+q”" ga L 9+9
Hieproa = { - Y ErE Y e,
_r_.] a3p=0 a=0
g—q -t PEAC 55
+— > sign(a—ﬁ)EWEm]} (.7
as£f=0
where, besides the anisotropy parameter g, one has an extra set of parameters {¢,} such
that g = ¢ = -++ = €p_{ = —€p = —€py] = -+ = —€pyy—1 = 1. Their role can

be better understood in the original two-dimensional formuiation of the PS models, namely
the multicolour ice-models (number of colours = P + M). In these models ferroelectric
configurations (all links of a vertex having the same colour) are favoured for colours a having
€, = -1 and for colours b with €, = —1 the corresponding vertex weights favour alternating
coloured configurations {23]. Each possible set {¢,} defines therefore a completely different
physical system (see e.g. [24-26]). From a mathematical point of view though, these
chains have a rich underlying Hecke algebraic structure which yields important relations as
regards their spectram {27]. Our result extends that of [14] by showing that it is possible
to encompass more general chemical reactions with the inclusion of external fields in the
models given by (P/M) = (3/0) and (P/M) = (2/1).

The second result in this paper is intimately related to the problem of boundary
conditions. In the case of quantum chains appearing in equilibrium problems, the boundaries
are expected to play no significant role in the determination of the phase diagram. However,
for chemical processes where the Hamiltonian is non-Hermitian, this picture is far from
correct and the physics is boundary-dependent. This is intuitively clear if one thinks of a
biased (k # r) diffusion process .

A+@%ﬁ+A.



908 S R Dahmen

For open boundaries (equivalent to an impenetrable wall) one gets an asymptotic limit with
particles concentrated on one side of the lattice {28]. For periodic boundaries, the same is
not true, This problem was understood in connection with two-state spin systems where the
biased diffusion Hamiltonian was shown to be equivalent, under a standard local similarity
transformation, to an X X Z chain with a volume-dependent interaction at the boundary [29].
This boundary interaction term was also known [30] to arise in the XX Z chain through the
inclusion of a Dzialoshinsky-Moryia exchange term over the bulk [31]. We show that for
higher-state systems diffusing on a lattice with periodic boundary conditions, the similarity
transformation is non-local and yields volume-dependent bulk interactions which cannot be
written as a pure boundary interaction on the comesponding quantum chain.

The paper is organized as follows. In the second section we introduce the formalism
of the master equation on lattices and its mapping onto nearest-neighbour.quantum chains.
In section 3 we treat the U, %—invaﬁant model as a workbench for the application of
the method and reinterpret the phase diagram in the language of chemical processes. In
section 4 we extend the known results for the ps models with the inclusion of external fields.
We define also the non-local similarity transformation in terms of which we can understand
the role played by the boundaries. Section 5 is of a more mathematical character. We study
the transformation and generalize it to a system with an arbitrary number N of species, also
deriving the volume-dependent bulk interactions which arise from the mapping. Finailly in
section 6 we summarize our results and some questions which we still face.

2. The master equation and quantum chains

The master equation, which governs the evolution of the probability distribution of Markov
processes, is applied here in the description of chemical processes on a chain. Consider
a one-dimensional lattice with L sites and open boundaries. At each site j we define a
variable 8; taking N integer values (0, 1,2,....N — 1). To each possible configuration
{8} = {B1,.... AL} of the lattice realized at time ¢t we attach a probability distribution
P({B}, 1) whose time evolution is given by the master equation

d
P({ﬁ} ) Z { — Qg PBls s B D)

-+ Z I"ﬂ:-;iﬁhl-l-mp(ﬁ‘[, saay ﬁk + 21 ﬁk+1 + My ...y ﬁL; r)}‘ (2'1)
tan=0

Here and henceforth the prime in a sum over [ and m indicates exclusion of the pair
l=m=0 The I"“d are transition rates which equal the probability that, in a unit time step
and at any site j. j -+ 1 a state (8;, Bj41) = (a.b) changes to a state (ﬁ’,ﬁ_;_n) (¢, d),
pictorically @ + & — ¢ +d. We will assume througheut this paper that the transition
rates depend only on links (nearest-neighbour interaction) and are homogeneous, i.e. site
independent. The £, are related to the probability that a state (a, &) changes after a unit
time step. Conservation of probability implies

/
Qup = THP. (2.2)
Ly

Using the matrices E¥ we can rewrite the master equation (2.1) as

) _ gy @3)

ot
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if we identify |y} as the probability P({ﬁ}_, t) and H as

L1 L~1
H:ZHJ-_-Z(Uj-—n)
=1

Jf=1
U = 2: QupENER, (2.4)
o, b=0
= b b
i,
;= Z F E;aEJ+l
a.b,c,d=0

To identify the Hamiltonians of these chemical processes with those of known integrable
quantum chains we must find the appropriate set of rates so that & can be recast as

L—1
H=H+) (u+hoi+8& —g) + H' 2.5)
=t :
where HY is the integrable Hamiltonian and the terms upder the summation sign are a field
and a surface contribution, respectively. The spectrum of H is independent of H'. We shall
ook only for those chemical processes with a spectrum equivalent to that of some quantum
chain, therefore guaranteeing the equality of the phase diagram. The wavefunctions are not
the same. For a non-degenerate spectrum it is, in principle, possible to define a similarity
transformation of the form A(A) such that
L-1 ,
AQHA™ () = HO+ 3 (b + bt + g — i) + HY () (26)
J=1
such that for some given value A = Ay we have H lr(ko) = 0. If such a transformation were
found, then the wavefunctions of the chemical problem could be obtained from that of the
quantum chain.

3. The U, ST (2) model and the X X Z chain

In this section we address the problem of finding the set of chemical reactions associated
with a given quantum chain based on the master equation approach. Our ultimate goal is to
use the phase diagram of the chain to explain the chemistry of reaction-diffusion. processes.
In what follows we identify particles with A = 1, B = 2 and inert state (or vacancy)
= . The boundaries are open., The symmetry requires that only left-right symmetric
processes be taken into account. We therefore consider a system in whlch particles A and
B diffuse symmetrically with rates equal to unity, i.e. 1"&? = I‘?é = I‘U 5 = I"g 3 =1 In
addition, we also allow particles to-react according to the followmg vacuum—dnvcn rates:
(i} Annihilation: pairwise destruction of particles with rates I‘o 0 I"gcz,, l"u 0= 1"(2,(;
(ii) Coagulatlon pairwise aglutmanon of allke particles with rates 1" 1"(1]'{ and
2,2
Pyo = F
(iii) Death a particle vanishes from the system according to I‘ég I‘g:é and T‘gg = I‘O'z
(iv) Polymerization [32]: mending of alike particles with rates Fé‘é = 1"[1,2 and
1"2 2 I-.z 2
0=
) Trappmg [33] a partlcle traps its neighbour with rates 1" 1"(1,]2 = 1"]25 Fgl'll )
- and r'z,o = I"0,2 =Tg3 =T ‘
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Using (2.2)<2.4) we find that the chemical Hamiltonian corresponding to these rates is
given by

H=H+H
L-1
= Z(Hic.)iﬂ + Hz{;-;-l) (3.1)
i=1
where
0
(rg;g-}-l ~1 )
Tos+1 -1
—1 Iee+1
rid+ 2l
+2Tg;
# = i3+ ar?
+2p;
-1 rog+1
Folo+ 2003
+2Fg3
Too + 205
\ ariz )
(0 Too Tog Too Too Tog Tas Trg Tory
0 Tyr Toi oy Toi
B, = 0 Fg.] T For Tol 32)
0
g2 Toz O Fé;% ros
\ 0/

where the matrix elements not explicitly shown are zero. It is important to note that the
specirum of H coincides with that of H®, This feature is encountered in many non-Hermitian
chains and can be understood as follows: H® conserves the total number 7, of A particles
and ng of B particles separately and can therefore be brought into a block diagonal form.
On the other hand, H' reduces the total particle number n4 -+ np by one or two since it is
made up of vacuum-driven processes. From linear algebra we know that the spectrum of
matrices of the type H = H®+ H! with such properties is independent of H'. This has an
important physical consequence: since the spectrum does not depend on each parameter of
H' sepatately but only on their combinations which enter in HP, the number of effective
parameters is reduced to eight (see equation (3.2))f.

+ Due to conservation of probability each diagonal element of a Hamiltonian must equal the sum of the non-
diagonal entries in that same column. We can see this if we look at the definitions of rates in section 2 and realize
that the conservation of the probabilities implies in a relation among rates which can be written as Zk#! Hu = Hy.
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Qur aim is to show that this Hamiltonian is equivalent to that of equation (1.3). To write
it then in a more enlightening form, we first define some shorter notation by regrouping
processes of the same category, as in table 1 (f = 1, 2J.

Table 1.

Notation  Definition Processes

Ay Ty Annihilation

AT, Ty £ T Annihilation
&+ ¢ i

o I t).:l + Ffs‘n Death

ct T+ Ty Coaguiation

L rtl).'zi + 1-21::(1' Polymerization

P rczl.'lz + 05 Polymerization

r* (P2 T+ P2 £ T30 4 042 & T241 4+ (P32 £ T2Y]  Trapping

It is clear that in the present problem only the symmetric combinations are noa-zero,
since the symmetry of the model so requires. If we make the following identifications

v=A)+Cf + P -Df -2

w = $(Df + D) +1 G2
together with three constraints
2w v=Ay+CF + P
dw+2u=A%L+T" (3.4)
D} = D5
we can rewrite H° of (3.1) as
L-1 '
HO=3"—(EI'ES, + EEY, + EPER + EPER) + w(sl + &) +velely, 55
! i=1 .

£0=E11+E?.2 £z=E11—E22.

Comparing this expression with H] of equation (1.3} we conclude that they have the same
phase diagram since the term in Hj having the parameter a as coefficient is a surface
contribution. To interpret the phase diagram in the language of reaction—diffusion processes,
it suffices to identify the parameters of the Heisenberg chain with the rates of the chemical
model. It gives (see (1.6))

po At AT
B 2
+ e -
A=1+D1—(A]:cl+ﬁ) 38
B _1- AL+ C+ P+ DY

2
The analysis is straightforward. A = 0 implies that alf rates vanish suz death. In this
situation
A=1+1iD} B =—A. ' (3.7)

By varying the death rate we go from a massive regime to a massless one, that is, the
time evolution for the concentration of particles has an exponential or algebraic fall-off,
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respectively, This can be understood on physical grounds: being a “‘one-particle’ process,
death happens irrespectively of any other processes occurring in the system, i.e. it is not
diffusion-limited since any particle can die alone. It therefore outruns the characteristic
time-scale set by diffusion and brings about a quicker decay. With an exiernal field we
have

A+h—-1=1{Df. (3.8)

If death has a non-zero probability, then from the equation above one sees that the system
is massive ferromagnetic. If we identify spin up in the Heisenberg model as a vacancy in
chemistry, this means having a ground state with no particles. By varying the rate of death
we approach the line on the phase diagram given by A + 2 = 1. The system undergoes
a PT transition [20] when the energy of the state with just one particle equals that of the
state with no particles and it becomes the ground state. We have a level-crossing: since
death is absent the system can evolve to a final steady state where only one particle is left.
It is worth noting that in the massless regime {absence of death) many reactions besides
diffusion still coexist, namely annihilation, coagulation, polymerization and trapping. This
is 5o because the time-scale set by diffusion cannot be outrun, since ail the remaining
processes ate two-particle ones. In other words, in a situation where the particles are some
lattice spacings apart, they need first to diffuse before they reach each other and react—the
processes are diffusion-limited. This observation is confirmed by results obtained in other
studies where the time decay of the concentration of particles was shown to be algebraic in
time (for pure annihilation ¢; ~ t'/4, see [15]). It also allows us to say that, qualitatively,
the massless regime remains even if the other three reactions are present, as the previous
equations show.

4. The Perk-Schultz chains

4.1. The U, SU(3/0), U, SU2/1) and U,SU(1/2) chains

It is well known that the Hamiltonian of the six-vertex model is also the time-evolution
operator for the two-state asymmetric diffusion process [11]. Recently this idea has been
extended by Alcaraz and coworkers [14] who showed that the Ps Hamiltonians appear as the
corresponding operators for higher-state diffusive systems. Intuitively we can understand
this if we recall that the quantum PS chains were originally obtained from the T-continuum
limnit of the transfer matrix describing higher-state vertex models which obey the ice-rule.
This picture is, however, far from complete and can be extended to encompass more general
chemical systems if we reinterpret the additional reactions on chemical Hamiltonians as
external fields in the P$ chains onto which they are mapped, For the sake of completeness,
we present first the results without external fields obtained in [14] and then proceed with
the generalization of these results,

We first consider a system in which particles A and B diffuse on the lattice with rate
'z if the particle jumps to the right or ', otherwise. For the interchange process we take
the rates accordingly if B replaces A on the right or on the left. With the rates so defined
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we get a Hamiltonian which reads

H=ZH,-

\

_l"L

_[‘L

—Tr

—T'r

I'r

o/

913

@.1)

Defining ./T1/Tr = g, which measures the asymmetry of the diffusion, and the diffusion
constant +/I'LI'r = D, which sets the time-scale of the problem, this can be rewritten as

0 )
( g —4q

-1

-4 q

9l =
il
(=]

(4.2)

-q q
\ ’ —q q

0/

In [14] it was observed that this non-Hermitian (g is real!) Hamiltonian is U/, SU7(3/0)-
invariant (cf equation (1.7)). They further observed that if one considered only a new
set of processes corresponding to coagulation of B (B +B — B + @ with rate [‘%02 and
B+B — #+B with F33) such that I'yg + I'2Z = D(g + ¢~') and the above plus
coagulation of A (A+A — A+ with ['jg and A + A - § + A with T'}) with the
restriction I'}} + '3} = D(g + ¢™") non-Hermitian U, SU(2/1)-invariant and U, SU(1/2)-
invariant chains are obtained. The exact form of the transformation matrix which brings
these chains to a Hermitian form was however still lacking. This motivated us to find this
similarity transformation which, in contradistinction to the two-state case (see e.g. [29]), is
non-local and reads

2

Fe ¥

[+ 4] ,az.....liL=0

q% Z}?};:, sign(ay—ai} poan @ E®™ @ ... @ EoLoL_ 4.3)

The physical features this matrix induces are also completely novel. We postpone a more
detailed discussion of this topic to the next section, where we study its properties.

‘We note that the two last chains present a particular feature. From the spectrum of the
(2/1) chain, the spectrum of the (1/2) can be obtained in a straighforward manner. We
reverse the sign of the whole spectrum of the (2/1) model and add an overall constant equal
to (L —1)(g+g~"), which is the highest energy of the (2/1) chain (this value is indeed the
highest energy for all L-site (P/M) chains with g real and non-zero P and M: an outline
proof is given in [27]). In the chemical scenario, however, they correspond to different
physical pictures and the reason is the positivity of the spectrum.
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4.2. The chains with external fields

We now generalize the previously mentioned results to include the most general set of
vacuum-driven processes which can be written as a pure non-Hermitian Hamiltonian H'*
which. does not affect the spectrum of the p$ chains. Beyond the 24 rates of section 3 (no
left—right symmetry!} we can inciude one more set of reactions, namely those corresponding
to mutation and transmutation of A. The corresponding rates are I"zo, I‘oz, l"é:g and 1"2:(1,

For these reactions we define the following combination

ME=Tg, 38 X =T95%=Ty3. 4.4
Using the master-equation approach we get a Hamiltonian which can be written as follows

H H

S=5+ Z(h +hipt + 8 — gegr) + H .5)

i=1
where H is given by (4.2) and H! = ¥, H}, being the same in all cases, reads

01 02 pl0 pLl ml2 20 R21 0 622
( 0 Too Too Too Too Too Ioo Too T'oo

11 L2 21 22

o o ot T Toy Tor

Togn 0 Tgs r?;%' F?,'g Fg.'% Fg,'g

o M b I

= 6.0 1.0 ro o f @6
0

0,1 1,0 1,1 1,2 2.1 2,2

FZ.O FZ.O F2,0 1-‘2,0 0 1-‘(2),0 1-'2,0

\ o/

It is important to note, as in the last section, that the spectrum of H’ depends on H' only
through the A’s and g’s which are diagonal contributions arising due to conservation of
probabilities. They commute with H, playing the role of external fields and surface terms,
respectively. Their values differ for each particular chain as can be seen in table 2.

Table 2.
Model 13 ha gt & Constraints
+ ov+tapt + - YD~ -
vpsue) MR gy MRl E T D =Cf 4B 44
DY = c* + B+ Az

2+T+—M+-§-X'*'+D"‘+D"‘

e . } Ap+T-=D; -M[ —X[ - D7

v suy MEasl _gp o _Mpeenr B L+TL+D+—C++P1 +Al
Dy =Cf+ 85 + A —Dlg+g™")

AE+T'*’ M++x++D++D+

AR +T- —Dz—M‘—X —D'

M +XT+DF DF M +XT+07 .
Upsuay SR _gp MR L3 My 4T+ Df =+ PE b A

Dig+¢~1)

Df =CH+Pf + A -Dig+¢™H
AL+ T+ =M} + X} + D} + DF
Ap+T =Dy —M; -X[ -Dy

The constraints arise from the fact the number of parameters in the original chemical
problem exceeds those of the quantum chains they are mapped onto and must therefore be
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related. Due to the symmetry properties of the PS chains, the field (and surface contribution)
were decomposed Into three independent variables ki, (g,), one for each conserved particle
of type «. Since one of our particles is an inert state, we took the cotresponding variables
fig (go) 10 be equal to zero.

Unfortunately little is known about the phase diagram of the PS chains on an external
field. Since the field commutes with the particle number operators, its effect on the spectrum
is trivial and one may use the Bethe ansatz equations to obtain reliable finite-size data and
consequently determine the phase diagram. Apart from the difficulties in analysing these
equations, there is an additional subtlety: the non-Hermitian chemical Hamiltonians are
related under F to Ps chains with different properties, whether the boundaries in the original
formulation are open or periodic. This reflects the fact that the chemistry of reaction—
diffusion models is boundary-dependent (see the discussion in the introduction of this paper)
and in our case this is brought about by the non-locality of F. For periodic boundaries, we
found that the bias-dependent chemical system is simifar through F to a pS Hamiltonian
with volume-dependent interactions spread through the bulk in a highly non-trivial way (see
section 6). In this case the Bethe ansatz equations are given by [34]

L

sinh(0\® —ey/2) ) ot sinhA® — 29 — gy)
N e sinh(A) — A0 — ¢y /2)
ol sinh(}u,({m - ,&” +e1¥/2)
Nkt I o _ ﬁ s%nh(l% —~ x{jz +ay/2) 4 s?nh(lgj ~ A{:J —&y)
sinh(Ag ' —A;" — €1¥/2) o=y Sinh(Ae” — A7 1)

=]

¥ (NotN1) M1 (Sinh(kg}) + 503’/2)) ] Sinh(lf(cg) — Ag?’ + ey

4.7)

where {g,} are the parameters of the PS chains, and y is related to ¢ through g = exp(y).
The N;'s correspond to the particular number of particles of type 7 in each charge sector
and the M;’s equal the number of roots of the set of coupled equations. They are obtained
from the N;’s through -

My=L—(No+ N +---+Ny) (4.8)

where L is the lattice size. These equations were also derived by Lopes and de Vega [23]
but without the bias-dependent non-local interactions. We shall return to this problem in a
future publication.

5. Similarity transformation and boundary conditions

In this section we consider thoroughly the transformation given by the matrix F infroduced
in the last section. We shall address two points; the first regards the extention of JF -
not only to higher-state models but also to multi-parameter diffusion processes, i.e. those
characterized by a larger set {g} = {g1,42. ...} of parameters in contradistinction to the
one-parameter diffusion we dealt with so far. Second, we want to look at the effect of F on
periodic chains and the physical features it induces. We would like to note that this matrix
is implicitly used by Reshetikhin in his paper on multi-parameter quantum groups [35].
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5.1. Multi-parameter and higher-state diffusion processes

As before, we consider a system in which (¥ — I) different species diffuse and interchange
places on a one-dimensional lattice with open boundary conditions with rates

ArtAy=Ay+ A, TRsTy x>y=01,N~1 (.1)

from which we define %N (N — 1) parameters gy

T = dxy (5.2)

Wwith gy = q . We impose a homogeneous time-scale

0,4 0,42 bz, AN-2 Aot ANt An ' '
JTSATES = frohrad = . = Jrjirdpheidis o p (53
and obtain a non-Hermitian Hamﬂtoman
L=
Z{ Z any(EFEL, — E?E’”‘])] 5.4)
k=1 L agy=0

which governs the time evolution of the chemical system defined above. Our goal is to
find a similarity transformation which makes H Hermitian. The (non-local!} similarity
transformation which accomplishes this reads

N-I N-1
F= Z ( l—[ (qu)f;v(&l .ctz....,m.)) EU% @ E%B% Q... @ E%o 5.5)

ey, 0y 0z =0 M x>y=0

with the functions f, given by

Foplen, 0z, ..oy =1 Z (St x8ctm,y — Botw. 38 )- (5.6)

#xm=1
We point out in the expression for the function that the order of its arguments is
very important since they index the sites on the chain, that is, f{..., a5, o41,...) #
f("-aaj+iaaj!"')- '

Proof. For clarity, we consider the diagonal and non-diagonal parts of the Hamiltonian
separately, Since F(3; Hj j31)F ™" = 3, FHj,j4aF ", it suffices to consider the action
of § on the two-site operator Hj, ;..

Consider first the action of F on the diagonal piece of the Hamiltonian. We have

prdiug _ N—I
F J5+1F~] —_ Z H(qxw(ﬂl 7700 L)Ealal ® f ot ®R.--® Enab)( Z QGbEuﬂEfi[)
(al=07>y Porad
N=1

x Z H(q;fuz(ﬂlvﬂz ----- Bu) Eﬁ'lﬁl ® E.Bzﬁz @ - ® EﬁLﬁL)_ 5.7
[Bl=0w>z

Reordering the terms, one has
diag

H
.F_JB'HF" ZZ l—[ H (g f:v(cn 3L ;éfmz(ﬂl-ﬁz.--..,ﬂ;_))

&) (B} x>y=0w=>z
% Eeer phg: @ Eoa polel ® @ 10 @ 1U+Dh ®® ENLﬂLEﬂLﬁL
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N-1 )
x% Z Z (qup EY% EYEBE @ E%n1%+) EVP BBy, (5.8)
@) X1 asth=0

B

Since x, y, w and z serve only to index the same set {g} of diffusion parameters, we can
take x = w, y = z. Using the multiplication properties of the matrices £%°, namely

EME™ =5, B (5.9)

we get

d.mg

F JJ-I-]}—— ZZ l_I (gxn(ﬂth&z ----- o)~ fev(Br.Ba.- ﬂl.))

(@) 8] x=y=0
XE“‘O"&,I ﬂ ® Eﬂzazamﬂ @@ 1(1) @ 14+ Q. --® EﬂLaL3 L

E (QabEau ..;.16(2_, aao:;.,.].baaj‘,ﬂ,aaﬁl ,ﬁ,.i.])- (5-10)
”‘Jv“ﬁ-l a#b=0
N

Taking into account the Kronecker’s deftas we have

deagl N—-1 N f ( ) _f ( ) 7
j.Jj F- E | I A0 L ey (01,0200, G, § E E:
F J':J ! = J’ : e ( q 7 -‘i‘b])

{a} x>y=0 aFb=0
xEnn g Ereng... @10 10t g ... g Eue, (5.11)

The exponent of g, is clearly zero. Summing over {«} we have finally

diag Nl

H
f—%ﬁrl =) qul®1® QE{QE],, 8 81
ath=0
diag
=Lt 5.12
> (5.12)

This shows that the diagonal elements of the Hamiltonian are not changed.by the
transformation generated by F.

To see the effect of 7 on the non-diagonal part we consider only the two-body operator
for a given value of the pair {a, b). We have

nond

H™
.7-'———"5“ F = S(quE{" B4y + 4 EFEf{DassS ™" SRR

As in the diagonal case, after multiplying the E*® matrices on each site we obtain

nond Nl N—

FHj:g+l F'—l Z Z 1_1 ( frr(“l og,. ”L)_fxy(ﬂl-ﬁ:‘.v----ﬁl.))

la} {B] x>y=0
X BN 8y, H® R 1 e 1U+ R EmLaLaaL B
XY Gub B EL 80yu08,0 + o EfCEL210y.688; 0 am08,01,880 8501
Eir
(5.14)
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This reduces to
nond N=l N-1

F Sid+l o Z H qkf;_,(nr:,...,a, e TIRTN. T S 10 - TR SRR ST, 7
D {x} x>y=0
xE¥N% @ F9% @ ... @ 1(1') 14U+ ® - @ g
%(qus EX* ES2 80y a8uinp + Qo B EL0 80, 82y )usb- (5.15)
Note the interchanged arguments in the exponent of g.,, that is
fxy(ala N2 T 2" T PR ,Q.']'__) - fxy(ﬂf!s ...,ij-;-[,aj,.. '1“]..)
= %(5%-4_1,::5&,,)# - Eaj+|.y5&j.x) - %(aa,-.xao!m Wy Bapyaﬂ'jﬂ .x)
= Saj+:,x5aj,y - aa,.,.[.ysaj.x- (5.16)
Substituting this expression on (5.15) we get
Hpond Nl Nl e w—be, b
F Jof+] f-_l — Z 1_[ qx;;,_(_l.: ) 30, [y Oup
D {e} x>y=0
EabEab 5 3 —lEba Eub 5 5
quab o= e alag b + Gup L) +1%;,b a,+1,a)u>b
xE¥ @ E® @ @1V @ 1) ®- - @ EnL. (5.17)

Summing over {o:} gives us an identity matrix on each site. Kronecker's delta eliminates
the sum over a;, a;+1 such that we are left with

Hnond
FIbIH J’ Jj+l }__ ]__[ ( SbxBe,y—8a,x O, anbEab + qx;’,ﬁb R “3:“. -I EbaEabl)Db
x> y=0
(qab QabE E_;+1 + Q’abqah E E}Ji])ub
= (B BN, + EPE{ Dasb. (5.18)
The above term is clearly Hemutian. This concludes our proof. c

To finish we would like to indicate how in the one-parameter N-state diffusion process
this expression simplifies. The rates are defined according to

Ac+Ay, = Ay, +A; Tr1TL x>y=01,...,N—1 (5.19)
for which the L-site Hamiltonian reads

2= q—i—q“l N-1 N—1
':5=Z{ ) —[q Z E:ﬁEfil Z E,f‘eEf_ff,

k=1 a>=f=0 a<ﬂ 0
+ —1 N1 -1 N-I
+2 ‘1 2 EXES, 4 2‘3 Y sign(e — BYEFES, (5.20)
aFxf=0

In this situation the operator fF from equation (5.5) with g., = ¢ reduces to a much simpler
form. By observing that in this case we have
L
fleron, oY+ 4 fvoi(en, o, .., eL) = % Z sign{oy — otm) (5.21)
n=m=]
F is reduced to (see section 4)
Nl
F — Z q% E,':',,n:] sign(or,.—am]Emm ® Eﬂfz(.!z ® e ® Em"a". (5-22)
[+51 ,al.,...al_=0

The results presented here hold for any of the U,SU{P/M)-invariant PS chains with
P+M=N.
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5.2. Periodic boundary conditions

Due to the non-locality of the similarity transformation, the chemical chains with free or
periodic boundaries transform differently under F. In the first case the non-Fermitian
chemical Hamiltonian is transformed into a Hermitian PS chain. In_ the second case, the
Hamiltonian is similar under F to a quantum chain with non-trivial bulk interactions. In
the two-state model, this simplifies to a volume-dependent boundary interaction which, on
its turn, was understood to arise from a Dzialoshinsky—Moriya interaction in the bulk [31].
This has been known for years and we review it shortly.

Consider as before particles diffusing on a one-dimensional lattice with penodw
boundaries. The rates are given by

A4+-G=0+A IpIL : {5.23)
where D and ¢ are defined in the usual way (see section 4). The Hamiltonian thus generated
-1

H & ([g+g7 q+q a—9 o

—q'EPPED, — quEH] } (5.24)

It is convenient to change to the more familiar basis of Pauli matrices, by making the
identification

00
= (1 +0%)
1 z
=z{1—c7%)
EO ;+ (3.25)
E% — g,
In this basis the Hamiltonian can be written as
H - g+g" ., g-q"
'5 _—— Z {Zq lak Uk-}-] +2q0‘k U'k_'_l + _2'“—UEG§+1 - 4 . (5.26)

The constant term is irrelevant in our discussion and we will drop it for the time being.
Applying equation (5.22) to the remaining terms in the chain we get

1

L_B_ 18 - - atq”
.F-—-J-' ===z E 1208 o + 20, 0 + 61501?“}
. -1
- {ZQLUE‘JI' +2q7 o7 ot + 2 +2q aﬁdf] - - 62D

Since g is real, we have a boundary term which is proportional to the volume of the system,
changing the whole structure of the problem. In other words, the dynamics of diffusion
processes in a chain with open boundaries are different from that of a periodic chain [29].

To explicitly see the Dzialoshinsky—Moryia interaction in (5.26), redefine ¢ in terms of

a new variable n

g= =1 7 (5.28)
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in terms of which Mg = %(1 + ) and I, = %(I —n). After some simple algebraic
manipulation one can write (5.26) apart from the constant as

9

1 _ - L
= —E 2{20“:0’&_’_! +20k O';:H +0’,?O'kz+] + 2?’;‘(0’;0‘!:_}_‘ — oy O-‘,::_!)}. (529)
k=1

The new term is clearly recognizable as a Dzialoshinsky—Moryia interaction term.

For higher-state diffusion models on periodic lattices we get interactions other than the
ones obtained in the two-state case, after applying . To see this we first note that the whole
effect of F is to change the off-diagonal terms of the two-body chemical Hamiltonian at the
boundary, namely E{?E? and EP“E®. In the two-state case there are only two possibilities
for the pair (a, b): (1,0) and (0, 1). Since opposite pairs are related by an inversion of the
power of g, we have effectively one result which is g*. In higher-state cases, the power
depends on the particular (z, b) chosen. We present the results for the three-state model
and the for the general N-state case in what follows.

5.2.1. Three-state diffusion process Here we have (a,b) = (0, 1}; (0,2); (1,2) and the
reversed pairs. The action of F yields

Flg BV EYVF T =g EY @ My @ M1 ©--- @ My @ E°

q 5.30
M1=( ) ) 5.30)
1

for (a, ) = (0, 1). Exchanging a, b we get the same structure but with ¢ replaced by g™},
as expected. For the pair (g, ) = (1, 2) we obtain

Flg EPEMYF 1 =g EP @M@ Mo @ - @ My @ EX

1 5.31
M, ( . ) . (5.31)
q

Finally for (a, £} = (0, 2) we have

Flgo EPEX)F 1 = g PER @ MM ® MMz ® - ® MiM, ® EZ'. - (5:32)
We see now that, in the case under study, the effect of the transformation cannot be
understood in terms of boundary interactions, in contradistinction to the two-state problem—

the interaction is ‘spread’ over the bulk. The structure is analogous in higher-state models
as is shown next.

5.2.2.  N-state diffusion process Assume that (a,5) = (i, j) such that i < j =
0,1,..., N — 1. We obtain in this case

F{q_iE:‘jEii}j_-—l _ q—ZEJ;J' QMeM® . --@M® E{I (5.33)
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where M is an N x N matrix which reads

o \

M= , ) (5.34)

\ -

where g appears at the ith and jth positions in the diagonal. All other My are equal to 1
for k < i and k > j and equal to ¢2 in the case { < k < j. The interaction is spread along
the bulk as we can see from equation (5.33).

6. Conclusions

In this paper we have shown thai: (i} the Hamiltonian obtained from the master equation
of general three-state diffusion-reaction systems is related to two known integrable chains,
namely the Uq%—invariant model and the PS Hamiltonian with external fields. In these
mappings, not all rates’ governing the chemical processes are important in determining the
phase diagram of the the system; and (ii) the presence of asymmetic diffusion for three- and
higher-state systems reflects itself in the structure of the related quantum chains through the
appearance of a non-local bias-dependent interaction term, in contradistinction to the two-
state case, where such asymmeitry leads to a volume-dependent interaction for the boundary
spins of the associated quantum chain. This novel interaction can be understood as an
extension of a Dzialoshinsky—-Moryia interaction for higher-state chains.

The mapping used in this paper preserves the spectrum of the chains, implying that the
phase diagram of the chemical model is completely settled by that of the integrable chain. As
an example, we showed in section 3 how the massless and massive regimes of the quantum
chains yields two types of time dependence for the decay of the particles’ concentration,
which are in agreement with other studies [15]. In the PS models with external fields, where
little about the phase diagram is known, we went beyond the mapping by deriving the
Bethe ansatz equations for the three-state chemical processes taking place on a lattice with
periodic boundaries which is related through a similarity transformation to a PS chain with
the novel bulk interactions. Much is still to be done in the exploration of this mapping and
we expect it will enable us in the near future to gain some new insights and shed some light
onto the physics of reaction—diffusion models.
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